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ABSTRACT 

The effective parameters on soil arching in retaining structures composed of the steel piles (2PIE300) and the steel 

anchors were considered using PLAXIS 3D TUNNEL for a three-dimensional numerical model. To better compare, 

it was assumed that external loading conditions and technical features of structural elements  were  the same. To 

determine the  limits of effective parameters in fine (CL-ML) and coarse grains (SC-SM), according to the soil 

specifications of the stations A2 to L2 in in Mashhad urban railway line 2 (Iran), Hardening Soil Model (HS) was  

used. Modeling started with a horizontal and vertical distance of 2 meters and increased to a distance of 4 meters. 

The parameters of the soils including angles of internal friction, cohesion, density and elastic modulus and the 

distance between anchors have been selected to present the prediction model. All parameters of the soils have been 

used for multiple regression and artificial neural network modeling statistical analysis. To present a prediction 

model, 5 parameters including internal friction angles of soil, cohesion, soil density, distance between anchors and 

elastic modulus have been selected and all of them except final parameter have been used to analyze multiple 

regression and artificial neural network modeling. The results showed that the best regression model that could be 

presented is the correlation of 94% between measured and predicted values. The prediction effectiveness of the 

neural network model has been found to be acceptable as they produced higher correlation coefficient (99%) 

between the variables and for the prediction of the factor of safety. 

Keywords: Soil arching, Multiple regression, Artificial neural network, PLAXIS 3D TUNNEL, Line 2 of Mashhad 

urban railway, Excavation safety factor 
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INTRODUCTION 
 

One of the most widely applied cases in engineering is 

estimating and predicting one parameter according to 

available parameters effective on it. In the last years, there 

has been an attempt in different engineering branches, to 

find the methods which would not require complex 

calculations and not be time-consuming. For this reason, 

various methods have been used in Geotechnical 

Engineering, such as Multivariate Regression Analysis 

(MRA) and the recent years, Artificial Neural Network 

(ANN). 

Arching is one of phenomena repeatedly occurring in 

the field and laboratory. It has been found in underground 

structures such as underground canals. In underground 

tunnels, arching can be used to decrease the overburden 

pressure on structures. Redistribution of stresses due to 

arching effects can lead to changing the loads acting on 

the structure. These loads may be from the overburden 

pressure, surface loads and the lateral pressure of ground. 

Arching effect can be found in the natural excavation; has 

been used to describe the transfer stress phenomenon by 

mobilizing shear strength (Wang and Yen, 1974). In other 

words, aching is known as transferring stress from one 

failure mass to the next fix and stable masses (ASCE, 

1958). Many investigations have been done in this field 

(Vermeer et al., 2001; Chen and Poulo, 2002; Kahyaoglu, 

2009; Qiu-chang and Jian-wei, 2010; Kourkoulis et al., 

2011). In the recent years, other researchers have 

investigated the subject (Fattah et al., 2015; Wu et al., 

2017; Khosravi et al., 2018). Lai et al. (2020), for 

example, applied a total of 131 2D trapdoor-like discrete 

element models to address the soil arching effect, stress 

state and deformational behaviours of the piled 

embankments. The importance of the stabilization of soil 

or rock wall at the time of excavation has been considered 

by engineers. Accordingly, different methods of retaining 

structures have been considered as tools for the 

stabilization; these include concrete or steel piles, truss 

methods, cable anchorage method, and nailing in the soil. 

Soil arching is one of the properties of in the soil 
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environments that can reduce the expenses of the project 

without reducing safety. This study considered soil 

arching phenomenon and the influencing parameters 

including density and angle of internal friction angle to 

calculate the factor of safety for a 10 m long definite 

retaining structure. The factor of safety has been obtained 

using the finite element code of PLAXIS 3D TUNNEL 

(Plaxis, 2004). Finally, this paper presents an equation to 

calculate the factor of safety from the influencing 

parameters of soil arching for design of a safe retaining 

structure with a minimum displacement. 

 

Using Neural Networks             

High speed computers and algorithms have made it 

possible to use the neural networks to solve complex 

industrial problems previously requiring many calculations 

(Hagan, 1996).   

 

Levenberg- Marquardt Algorithm  

In this research, the Levenberg-Marquardt algorithm 

was used to train the network. It is a kind of back 

propagation algorithm different from the Gaussian – 

Newton’s optimization algorithm. A new order of weights 

in the step of k+1 is calculated as follows (1): 

(1)    W (k+1)= w(k)- (J
T
 J +λ. I)

-1
 J

T 
.ε (k) 

J  is the  Jacobian Matrix written for a Neuron as follows 

(2):  

 (2) 
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Where, λ is a non-negative damping factor, I is the 

identity matrix, w is the weight vector, and 𝜀 is the error 

vector. There is difference between the output of network 

and the real output. Parameter λ is corrected on the basis 

of the function of E. If E is deceased in any steps, it is 

accepted; otherwise, λ will change and w (k+1) will be 

calculated again.  

 

MATERIAL AND METHODS 

 

A case study: Line 2 project of Mashhad urban 

railway 

Mashhad, the second largest religious city in the 

world, is located in the north-east of Iran. Tunnel of 

Mashhad Urban Railway line 2, with the  length of 14km, 

the excavation diameter of 9.43m and the  completed 

diameter of 8.4m,  has been extended along  the north-east 

to south-west, with  13 stations, named A2 to L2 (Figure. 

1). This tunnel has been excavated by two TBM machines 

(EPB/Open) in two sides, one from the northern direction 

at the distance of 383m from the station A2 and the other 

from the southern direction (Station L2). 

 

 
Figure 1. Mashhad Urban Railway line 2 

 

By using the trial and error method, different 

dimensions related to the geometry of models, such as 

width of excavation, could be simulated and the desirable 

distance would be obtained for the model borders. 

Regarding the dimensions of the district for excavation 

and the above-mentioned subjects, the geometry of model 

is illustrated in two dimensions, as can be seen in Figure. 

2.  This geometry is the same for all models. 

 

 
Figure 2.  Dimensions of the model 

 

Soil material and proper behavioral model  

Soil of the station A2 is a fine grain one, while the soil 

of station L2 is a coarse one. According to this, the studied 

soil, from fine grain (CL-ML) to coarse grain (SC-SM), is 

in the same form without any lamination. The conformity 

with geotechnical conditions of the structures of the 

mentioned stations has been considered to simulate the 

soil behavior. Among the advanced models, those which 

have less parameters and involve simple relations, in spite 

of the important behavioral sides of materials, are more 

desirable for the geotechnical engineers. 
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According to the geotechnical reports of Mashhad 

urban railway line 2, E50=10000 kPa is for the fine grain 

soils of the station A2 in the  depth of 0-9m and m=0.85 is 

selected. Then, regarding the  shear parameters of the  fine 

grain soil in the mentioned stations and 𝜎3=100 MPa, the 

value of E
ref

50=10000 kPa is calculated. 

E50=80000 kPa is for the coarse grain soil and m=0.5 

is selected. Then, given the shear parameters of the coarse 

grain soil in the mentioned stations and 𝜎3=100 MPa, the 

value of E
ref

50=80000kPa is calculated. 

According to E
ref

ur=3 E
ref

50 and E
ref

50=1.25 E
ref

oed for 

the  fine grain soil and E
ref

ur=3 E
ref

50 and E
ref

50= E
ref

oed for 

the  coarse one, the  limit of the  input parameters of the 

Hardening Soil Model (HS) is as brought in Table 1. 

 

Table 1. Specifications of the  Soil Materials 

Parameter Symbol 
The least 

value 

The most 

value 
Unit 

Soil behavioral 

Model 
HS 

Hardened 

Soil 

Hardened 

Soil 
- 

Soil behavior - Drained Drained - 

Density above water 

table 
γsat 13 18 

kN/

3
m  

Density below 

water table 
γsat 13 18 

kN/

3
m  

Secant stiffness in 

the standard triaxial 
test 

50

ref
E  1.8 x 104 104×8  

kN/
3

m  

Tangential stiffness 

for the initial 

loading 

ref

oed
E  1.44 x 104 104×6.4  

kN/
2

m  

Stiffness of loading 
and unloading 

ref

ur
E  5.4 x 104 104×24  kN/

2
m  

Potential of the  
stress level related 

to the stiffness 

m 0.5 0.85 _ 

Effective cohesion 'C  10 35 kN/
2

m  

Effective internal 

friction angle 
'  10 40 

 

Dilation angle   0 5 
 

Soil-structure 
interaction 

coefficient 
int er

R  0.5 0.67 _ 

 

Method of pile and anchoring    

Along Y, the structural elements of the steel piles 

have been selected from the constructional profile 

(2IPE300). Specifications of the piles are schematically 

illustrated in Figure. 3. Four piles along the Z of models 

and at a distance of center to center is equal (s) to the 

distance between the anchor rods. Cable anchors in the 

failure strength of 18500 kg/cm
2
 are used. Each cable is 

made of seven twisted wires and cable diameter is 0.6 

inch. The excavation diameter is 116mm with the angle of 

10° in horizontal, to perform the anchors. The length of 

the injection masses is 8m for all anchors. The location of 

the anchor rods (including the distance of the first row 

anchor rod from surface and horizontal, and the vertical 

distances between the anchor rods from each other) and 

their lengths are according to the standard of FHWA. In 

this case, in all models, the distance of the first anchor rod 

from the surface is 1.2m, and the distance of the middle of 

the injected section of the end of the anchor rod in the first 

row is 4.5m from the surface. Then, the free length of the 

first anchor rod row is 15m for all models; the length of 

other anchor rods has been measured in terms of the first 

anchor rod row. There was no cover or retaining structure 

(Lagging or shotcrete) between spaces of the steel anchors. 

Tables 2 to 4 illustrate the physical specifications of the 

elements. 

 

Table 2. Specifications of the  steel anchors 

Parameter Symbol Value Unit of Measurement 

Axial stiffness EA 
3.5028 

x 10 6. 
kN/m 

Flexural stiffness EI 
6.4602 

x 10 4 
kN.m2 

Weight W 0.828 kN/m 

Poison’s ratio ν 0.3 --- 

Material behavior Elastic 

Element Plate 

 

Table 3. Specifications of  the injected mass 

Parameter Symbol Value Unit of Measurement 

Axial stiffness EA 
5.28 x 

10 4 
kN/m 

Element Geogrid 

 

Table 4. Specifications of the steel anchors 

Parameter Symbol Value Unit of Measurement 

Axial stiffness EA 
1.149 

x 10 5 
kN 

Material behavior Elastic 

Element Node to node anchor 

Pre-stress Force 200 kN 

 

Figure 4 illustrates the first phase of  the construction 

stages. In this stage, the shafts are excavated for steel piles 

and these piles are interred in these shafts. In all models,  

the depth of the  interred pile is 3m. 
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Figure 3. Schematic view of  the profiles 2IPE300 

 

 

 
Figure 4. Perspective of the phase 1 of the  model in stage 

construction analysis 

 

 
Figure 5. Perspective of the phase 2 of the  model, 

excavation in the  depth of 1.7m 

 
Figure 6. Perspective of the phase 3 of the  model – 

activating the first row of anchors 

 

 
Figure 7. Perspective of the phase 4 of the  model – the 

second stage of excavation 
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Figure 8. Perspective of the phase 5 of model – activating 

the second row of anchors 

 

 
Figure 9. The final phase of excavation 

 

Figure 5 illustrates the second phase. At the beginning 

of this phase, the stress effect resulting  from excavating 

piles has  been omitted and the change of the first places 

as  a result of stress will be zero. Then, the excavation will 

be performed to the level 0.5 m, which is  lower than that  

of the first anchor rod row (in depth of 1.2). In this phase,  

the steel piles are active, while the steel anchors are not.  

Figure 6. illustrates the third phase that includes the  pre-

stress force on the  steel anchors. The three first phases are 

the same for all models; however, after that (phase 4), the 

depth of excavation will be changed based on the  change 

of the vertical distances between anchors in different 

models. In the phase 4, excavation is performed to the 

expected level. In this phase,  the steel piles and the first 

row of anchors are used. For example, the  vertical and 

horizontal distance is 2 m (Figure 7). In the phase 5,  the 

pre-stress force of the second anchor rod row is used 

(Figure 8). All of  the stages will be repeated to reach the 

final level of excavation,  the depth of 10m, based on  the 

distances of the anchors (Figure 9). 

 

RESULTS AND DISCUSSION  

 

Study of  soil anchoring parameters  

Anchoring zone can be found with displacement 

counters in the  soil movement direction, in addition to the  

rotation of the directions of the principal stress. The 

displacement contours in the direction x have been 

illustrated in Figures 10-15 to study, this case, the 

horizontal sections in x-z. At first, the relation between the  

safety factor and arching has been illustrated for 

quantification. After that, the parameters effective on the 

safety factor will be considered. As represented in figures 

10-15, the safety factors are 1.1, 1.7, 2.5, 3.0, 3.6 and 3.9, 

respectively. 

 

 
Figure 10. The circular pattern of the  lateral displacement 

of soil (Ux) between piles  with  the  safety factor of 1.1 

 

 
Figure 11. The circular pattern of  the lateral displacement 

of soil (Ux) between piles with  the safety factor of 1.7 
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Figure. 12. The circular pattern of the  lateral 

displacement of soil (Ux) between piles with  the  safety 

factor of 2.5 

 

 
Figure. 13. The circular pattern of the  lateral 

displacement of soil (Ux) between piles with the  safety 

factor of 3.0 

 

 

 
Figure. 14. The circular pattern of the  lateral 

displacement of soil (Ux) between piles with the safety 

factor of 3.6 

 
Figure 15. The circular pattern of the  lateral displacement 

of soil (Ux) between piles with  the  safety factor of 3.9 

 

In Figures 9-18, the darker sections illustrate more 

displacement, while  the lighter ones  represent  the less 

displacement. As shown,  the deformation pattern of soil 

in the  direction x is in the  arch form between the piles. 

The height and width of these arches are different; the 

reason is that with a higher safety factor, the height and 

width of these arches will be decreased. The reason for  

this displacement between pile and block as a  result of 

arching can be explained. This is because transferring  the 

soil pressure to the piles and blocks supporting  in the 

arching directions will occur. In other words, the transfer 

of  stress to the piles and anchors will be increased, while  

the displacement will be decreased as  a result of the  

arching phenomenon.    

 

Box-Cox method   

 When the relation between error and average is not 

clear as that  in the logarithmic and square 

transformations, then a potential transformation can be 

used. Box-Cox transformation function is a nonlinear 

monotonic transformation including log-linear and some 

special linear functions (Fitzenberger et al., 2005). It is an 

important transformation  covering  many distribution 

functions. Hence, this linear transformation can transform 

to normal distribution. The general form of this 

transformation is as follows (3): 

(3)  

 
Where, x is the  data that should be normalized,  λ is a 

real value and Z is a transformed value. If this 

transformation does not give the data to the normal 

distribution, the minimum data will be ordered. Also, the 

reverse transformation of this function is simple,  and this 
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is one of the  advantages of this method. In this case, the 

distribution function of data is as follows  (4): 

(4) 𝑓(𝑥) =
1

𝛽√2𝜋
𝑒
−
1

2
[
𝑥

𝛽

𝜆
−𝛼]

 

Where, 

𝛼 and 𝛽 refer to the  average and standard deviation  

of  the transformed data, respectively. Definitions of 

average (𝑥) and skewness (s) should be used to calculate 

the  real average and variance (5, 6). 

(5) �̅� = 𝐸(𝑋) = ∫ 𝑋𝑓(𝑋)𝑑𝑥
∞

𝜀
 

(6) 𝑠 = 𝐸(𝑥 − �̅�)2 = ∫ (𝑥 − �̅�)2
∞

𝜀
𝑓(𝑥)𝑑𝑥 

 

Method of estimating λ 

Using standard curves to calculate λ  

As shown in Figures 16 and 17, the data related to  the 

normal distribution have not been covered completely; so, 

the distribution of the safety factor is normal if λ= 0.06. 

This method has also been used for four independent input 

variables. λ values of the variables are illustrated in Table 

5.  

 

 
 

 
Figure 16. (A) Histogram of  the safety factor distribution 

with raw data; (B) Histogram of the  safety factor 

distribution after using the  Box- Cox transformation 

 
(A)      (B) 

Figure 17. (A) Cumulative distribution of the safety factor 

with the raw data; (B) Cumulative distribution of the 

safety factor after using the  Box- Cox transformation 

 

Table 5. λ Values for the  dependent and independent 

variables 

Variable λ 

The distance between anchor rods 2.88 

The internal friction angle -0.65 

Cohesion 2.6 

Soil density 5 

Safety factor 0.06 

 

Selecting the best regression model  

 As there   are few input variables, using all possible 

regression methods  is  preferred over  other strategies for 

selecting the variable. Using this method  seems  to be  

logical. Then, in the first step, all possible regression 

methods (2
5
-1) are processed by the mentioned method; 

after that, the processed patterns are divided to a  set 

(A) 

(B) 

(A) 

(B) 
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composed of 1-5 variables. Then, the patterns will be 

selected according to some criteria such as the coefficient 

of determination, the coefficient of determination adjusted, 

Mean Square Error (MSE), Mallow’s Cp and the best 

model used by the five mean variables. (Table. 6) 

As represented in Table 6, the processed models 

includes  cohesion; the second model includes cohesion 

and the internal friction angle. The three-variable model 

includes cohesion, internal friction angle and soil density;  

the fourth model consists of  cohesion, internal friction 

angle, soil density and the distance between anchor rods. 

Finally, the fifth model covers  cohesion, internal friction 

angle, soil density, the distance between anchor rods and 

the elastic modulus of soil. 

 

Table 6. Summary of the  results obtained from all 

possible regression models 

Number of 

Variables 
MSE R2 Adjusted R2 Mallow ‘sCp 

1 0.133 0.637 0.635 -0.45 

2 0.710 0.808 0.806 -0.16 

3 0.040 0.892 0.890 1.025 

4 0.022 0.939 0.938 5.6 

5 0.023 0.939 0.938 0.34 

 

Standardized regression coefficients    

It is difficult to compare the regression coefficients, 

because 𝛽j (dependent variables coefficients) is a reflex of 

the measurement units of the independent variable Xj . It 

will be useful to use the scaled dependent and independent 

variables that can lead to the regression coefficients 

without unit. There are currently two scaling methods. The 

first one is unit normal scaling. The second one is unit 

length scaling. Then, the effect of each independent 

variables can be addressed  by the standardized regression 

coefficients (Figure 18). 

 

 
Figure 18. The standardized regression coefficients for  

the regression model with 4 variables 

As  shown, cohesion and internal friction angle have 

the most positive effect on the safety factor; , while soil 

density and the distance between anchor rods have a 

negative effect . These cases were expected. 

 

The results obtained from neural networks  

The neural network has been considered to expect the 

safety factor. It is supposed that there is a nonlinear and 

complex relation between the safety factor and the 

specifications of soil. Consequently, the neural network 

has been considered to study the correlation between the 

safety factor and the  model parameters and to  compare  

the results obtained  from multiple regression analysis.  

 

Preprocessing the data      

 Training of the neural network can be more effective 

if some targets and inputs are preprocessed. Error 

estimation method is used to scale the inputs whose  value 

of error is equal to zero. Then, the inputs and target will be 

normal.   

 

Making model by back propagation networks to 

estimate the safety factor  

In this research, to estimate the safety factor, a leading 

network with a  back propagation algorithm and error was  

used. To train the network, the data were divided 

randomly in three classes including training, validation 

and test. Then, 70%, 15% and 15% of the data were  

divided for training, validation and test, respectively.   

Levenberg-Marquardt algorithm was  used to train the 

network and the  root-mean-squared error was also applied  

as a cost function. The network was  composed of two 

hidden layers and one output layer with arrangement (1, 

50, and 20); the tangent sigmoid function was in the 

hidden layers and linear function was in the output layer 

(Figure.19). The number of the optimized layers and 

neurons was obtained based on the trial and error;  then the 

desirable network was not unique. The results obtained 

from three subsets of training, validation and test have 

been illustrated in Figure 20. The correlation coefficient 

between the  measured and expected values was 0.998, 

0.993 and 0.994 for training (Figure 20 A), validation 

(Figure 20 B) and test (Figure 20 C), respectively.   

 

 
Figure 19. Schematic network including  two hidden 

layers and one output layer 
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Figure 20. Correlation coefficients for training, validation 

and test 

 

Square error curve based on the training cycles has 

been illustrated in Figure 21. The error values of 

validation and test were very close to each other; so,  the 

result was good, and preprocessing  would not  occur.  

 

 

 
Figure 21. Square error curve based on the training cycles 

for training, validation and test 

 

Analyzing post-training  

Training network efficiency is measured by using the  

errors of training, test and validation sets; however,  it is 

better to study the details of the  net reaction carefully. 

Postreg method has been designed to implement the 

analyses. So, the  following instructions can  illustrate how 

regression analyses can be done in the training network.    

a=sim(net,p);  

[m, b, r] = postreg (a, t) 

m=0.8879  b=-0.1429 r=0.9770 

where m and b refer to the  slope and linear fit and  y 

is the best regression linear related to the outputs. If there 

is a perfect fit (that is the outputs are equal to the target 

completely), the slope will be equal to 1. As found in this 

research, the result was  very close to the desirable values. 

The correlation coefficient was 0.9770, which was  

increased in comparison with the regression results. The 

graphic output has been illustrated in Figure 22.  

 

 
Figure 22. The linear correlation between the  measured 

and expected values after post training 

 

CONCLUSION  

 

In this research, we tried to provide a useful relation by 

using multiple regression and neural network  so that it 

would  the ordinary methods; it could  serve as  a fast and 

simple solution for the engineers and employers to solve 

problems. By conducting  the initial studies and finding 

the  geotechnical parameters of soil, different models with 

effective parameters were made by PLAXIS 3D 

TUNNEL. 
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As the  time of response was very long, the safety 

factor curve opposite of  this parameter was  drawn 

coincidently with making these models to omit the  

ineffective parameters and save the time. Totally, 212 

models were made on the basis of the available 

possibilities. 5 parameters were  measured on 212 models 

and they were made by the data. Then, various models 

with various variables were  processed by using multiple 

linear regression. The best model was obtained by using 

all regression models method. In this study, although data 

was not  normal, since  the result of parametric regression 

was desirable, nonparametric methods such as 

nonparametric regression could not be used. 

It should be , however, noted  that multiple regression 

analysis and artificial neural network training are used to 

expect the parameter which is the  safety factor; so,  they 

cannot be useful tools to analyze the effect of each 

independent variable on the dependent parameter. To 

summarize: 

1. There is a direct relation between safety factor 

and arching; as arching is  increased by enhancing  the 

safety factor (displacement will be decreased), then the 

safety factor can  considered to reach  a quantity concept 

and a relation.  

2. Soil cohesion (c) has the most positive effect on 

the safety factor. 

3. Internal friction angle (φ) of the  soil after 

cohesion plays the most important role in determining  the  

stability of the excavation.  

4. Soil density (γ) is the first effective parameter on 

the safety factor and anchoring has an inverse relation; so,    

if  soil density is  increased, the safety factor will be 

decreased.  

5. The distance between anchor rods (sh) is the next 

parameter. Although it has less effect in comparison to  the 

mentioned parameters, it is an important parameter as 

there is a reverse relation between it and the safety factor; 

so,  when  this parameter is increased, the safety factor 

will be decreased.  

6. The correlation coefficient as a  result of the  

neural network was  0.994 for the  subset of test. This  was  

more than  that  of multiple regression, thus indicating that  

the neural network can be  very strong in  determining  the 

relations between t variables.    
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