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ABSTRACT: Necrotic enteritis (NE) has a huge economic impact in the poultry industry. Numerous studies 

have shown that necrotic enteritis toxin B (netB) is a key virulence factor in Clostridium perfringens strains 

that cause NE in chickens. Early detection of netB in C. perfringens is important to circumvent the spread of 

NE. In this study, we developed a novel combinatorial approach involving (i) a commercial 2-step DNA 

extraction kit and (ii) a real-time polymerase chain reaction (qPCR) for the detection of netB-positive 

C. perfringens in fecal samples. Melt curve analysis and specificity test demonstrated 100% specificity 

without any cross-reactivity in other bacterial species with a limit of detection of 102 cfu/g. Field validation 

was subsequently conducted on nine fecal composites collected from different layer houses at two 

commercial farms, leading to successful detection of four netB positive samples. The study presented a rapid 

diagnostic qPCR assay involving a 2-step DNA extraction protocol to screen for C. perfringens carrying netB 

gene in chicken fecal samples.  
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INTRODUCTION 
 

Necrotic enteritis (NE), an important enteric disease, has a huge economic impact on the poultry industry. While chronic 

cases typically result in a loss of productivity due to poor feed conversion ratio, a significant level of chicken mortality 

could be observed in acute cases (Lovland and Kaldhusdal, 2001). It is projected that NE in chickens can cost the global 

poultry production industry to an estimated of US$3 billion losses annually (Mcdevitt et al., 2006).  

Although many predisposing factors play a role in the pathogenesis of the disease, the main causative agent for the 

dissemination of NE is the Gram-positive Clostridium perfringens. Toxicogenic classification of C. perfringens (Class A-E) is 

based on the production of four major toxin variants (alpha, beta, epsilon, and iota). It is well documented that NE is 

typically caused by the Class A isolates (Ezatkhah et al., 2016; Merati et al., 2017). Historically, a phospholipase C 

enzyme, alpha toxin, was long thought to be the important virulence factor in NE (Keyburn et al., 2008). However, the role 

of a novel beta-pore forming toxin, necrotic enteritis toxin B (netB), has been identified as a major pathogenicity factor in 

NE (Keyburn et al., 2008).  A seminal study conducted by Keyburn et al. (2008) demonstrated that an alpha-toxin null 

mutant of a virulent NE isolate can still cause disease in chicken, signifying the non-essential role of alpha-toxin in NE. On 

the contrary, C. perfringens with mutated netB gene were avirulent while the pathogenicity of complemented strains was 

fully restored, demonstrating the critical role of netB in causing NE (Keyburn et al., 2008; Rood et al., 2016).  

Since the discovery of netB, several studies have initiated the screening of the gene within a wide range of 

C. perfringens isolates. For instance, initial screening of a range of Australian poultry NE isolates found that majority of 

the strains (70%) were netB positive (Keyburn et al., 2010). In a separate study, netB was found in most of the 

C. perfringens isolated from chickens displaying clinical signs of necrotic enteritis (Rood et al., 2016). A study conducted 

in Canada by Chalmers et al. (2007) also showed that netB gene was predominantly detected in animals associated with 

NE. Similarly, Mwangi et al. (2019) also reported that 81% of the diseased chickens were netB positive. 

To circumvent the spread of NE and better inform the stakeholders on the health status of the livestock, the ability 

to detect the presence of netB toxin is critical. For example, Lee et al. (2021) first reported the use of netB-specific mAb-

based technique to determine the presence of native netB toxin in biological samples from NE-infected chickens. 

Since the conventional polymerase chain reaction (PCR) was developed in 1983 for detection of DNA, the realm of 

molecular biology has been at the forefront for microbial diagnosis (Kralik and Ricchi, 2017). Compared to culture-based 

assays which typically require few days to completion, PCR-based detection method can be done rapidly with a higher 

sensitivity. An advancement from the conventional PCR technique, particularly quantitative PCR (qPCR), is often 

considered a method of choice for detection of microorganisms (Rinttilä et al., 2004). Given the high prevalence of 

C. perfringens in fecal samples (Hustá et al., 2020), this study embraced two main objectives; first, we developed a real-
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time qPCR probe-based assay that detects netB positive isolates from fecal samples; second, we also evaluated a 

commercial kit consisting of a 2-step protocol to concomitantly (i) extract genomic DNA from fecal samples and 

(ii) stabilize the DNA at room temperature post-extraction. This allows ease of transportation of the extracted DNA to a 

laboratory to conduct qPCR without the need for a cold chain facility. Furthermore, we applied this assay for selective 

detection of self-spiked netB positive C. perfringens in fecal samples and deployed this assay to two commercial layer 

farms for on-field evaluation.  

 

MATERIALS AND METHODS 

 

Ethical Approval 

Approval to carry out this study was not required as no invasive method was involved. 

 

Detection of netB gene toxin from Clostridium perfringens field isolates 

Six Clostridium perfringens field isolates were screened for netB using conventional PCR with primers from 

Keyburn et al. (2008) (Table 1). Confirmatory tests such as iron-milk presumptive test, motility-nitrate test, and lactose-

gelatin test were carried out for identification of the isolates. Briefly, DNA extraction of a single C. perfringens colony was 

carried out by resuspending the colony in 50 µL of sterile distilled water and heating the suspension at 98 oC for 

10 minutes. The PCR amplification was conducted in a 25 µl volume consisting of 2 µl of DNA template, 0.3 µM of 

primers, 1x DreamTaqTM Green PCR Mastermix (Thermo Fisher Scientific™, USA) and Water, nuclease free (Thermo Fisher 

ScientificTM, USA) on a thermocycler (miniPCR®, USA). The PCR conditions involved initial denaturation for 120 seconds at 

95 oC, followed by 35 cycles of DNA denaturation for 15 seconds at 95 oC, annealing at 55 oC for 30 seconds, and 

extension at 72 oC for 30 seconds, with an additional extension for 5 minutes at 72 oC at the end of the 35th cycle. For 

amplicon visualization, 18 µl of amplified fragments were premixed with 2 µl of 10x BlueJuiceTM Gel Loading Buffer 

(InvitrogenTM, USA) and loaded into the wells of agarose gel containing SYBRTM Safe DNA Gel Stain (InvitrogenTM, USA). 

Amplicons were observed using an electrophoresis visualization system, blueGelTM (miniPCR®, USA), with BenchTop 1 Kb 

DNA Ladder (PromegaTM, USA) for amplicon size estimation. The netB positive isolates were cryopreserved for subsequent 

downstream real-time PCR assay development.  

 

Table 1 – Primers and probe used in conventional and real-time PCR for detection of netB gene 

Primer or Probe Sequence (5’ – 3’) Size (bp) Reference 

AKP78 (Forward)1 CTTCTAGTGATACCGCTTCAC 
383 Keyburn et al. (2008) 

AKP79 (Reverse)1 CGTTATATTCACTTGTTGACGAAAG 

netB Fwd (Forward)2 TAATGGTGATAAAAATTTCACAGAT   

netB Rev (Reverse)2 TTAGCATTTTTAGGTGCTGTTA 105 - 

netB Probe2 CTGGTGGATTTTCACCCAATATGGCTTTAG (FAM)   
1: Primer / Probe used in conventional PCR assay; 2: Real-time PCR assay   

 

Development of real-time PCR (qPCR) for detection of netB gene in Clostridium perfringens 

Primer pair netB Fwd and netB Rev targeting 105 bp of the netB gene was designed using Primer3Plus (Untergasser 

et al., 2012) as shown in Table 1. The primer pair was designed using Clostridium perfringens strain EHE-NE18 plasmid 

pJIR3535 as the reference netB gene (Accession: CP025502.1). Basic Local Alignment Search Tool (BLAST®) was carried 

out to ensure homology of the primers to the netB gene sequence (Altschul et al., 1990). A temperature gradient was 

carried out to determine the optimal annealing temperature (55 oC) of the primer pair. To ensure the specificity of the 

primer pair, a fluorescent melt curve analysis was also performed. Synthetic netB fragment (Integrated DNA 

TechnologiesTM, Singapore) was used as a positive control. The length of the fragment was 419 bp with coverage of 

nucleotide position from 30215 to 30633 of plasmid pJIR3535. A 20 μL reaction mixture containing synthetic netB DNA 

fragment, 0.3 µM of Fwd/Rev primers, 1x SensiFASTTM SYBRTM No-ROX Mix (Meridian Bioscience®, USA) and PCR Grade 

water was analyzed using Azure CieloTM 3 (Azure BiosystemsTM, USA). The qPCR cycle used in this assay was as follows: 

Initial denaturation for 180 seconds at 95 oC, followed by 45 cycles of DNA denaturation for 5 seconds at 95 oC, 

annealing of primers and extension of template at 55 oC for 15 seconds.  

Real-time TaqManTM FAM probe targeting netB gene was designed using an online tool, Primer3Plus. Similarly, 

BLAST alignment was carried out to ensure homology of the probe designed. A 20 µL qPCR reaction mixture consisting of 

template, 0.3 µM of Fwd/Rev primer, 0.2 µM of probe (FAM), 1x SensiFAST No-ROX Probe Mix and PCR Grade water was 

analyzed using Azure CieloTM 3 (Azure BiosystemsTM, USA). A total of three technical replicates along with corresponding 

positive/negative controls were included in the analysis.  

The netB specificity test was further analyzed empirically. Common inhabitants found in the gut such as Salmonella 

spp, Clostridium difficile, Clostridium butyricum, Campylobacter jejuni, Lactobacillus fermentum, Streptococcus suis, 

Enterococcus faecalis, Escherichia coli, and Bacillus subtilis were tested for non-specific binding of netB primer pair and 

probe (Table 1). A netB negative C. perfringens ATCC® 13124 was also included in the analysis for potential cross-

reactivity within the same species.  
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Detection of netB positive Clostridium perfringens in fecal samples 

Clostridium perfringens isolate carrying netB gene (M4.6) was cultured at 37 oC in Thioglycollate Medium USP 

(OxoidTM, UK) for 18 h. A ten-fold serial dilution was performed from the overnight culture to prepare a series of standards 

for spiking. The bacterial standards were plated on Perfringens Agar (Oxoid, UK) to quantify the bacterial load. Chicken 

fecal samples (4 g) were artificially spiked with the standards to a final concentration ranging from 101 to 106 cfu/g. Arcis 

Sample Prep Kit (Arcis Biotechnology, UK) was used for DNA extraction. Briefly, Reagent 1 (R1) containing lysis buffer and 

DNA stabilizer to rapidly disrupt cell membranes and protect the released DNA from degradation was added. Prior to 

qPCR process, an equal volume of Reagent 2 (R2) containing wash buffer was added to the extract. DNA sample was 

further purified from the R2-treated fecal samples using QIAamp® DNA Mini Kit (Qiagen®, Germany) according to the 

manufacturer’s protocol. Prior to the qPCR, an exogenous internal control (Primerdesign, UK) was added to the reaction 

mix to check for potential PCR inhibition. In brief, the 20 µL qPCR reaction mixture contained template (sample and 

internal control), 0.3 µM of Fwd/Rev primer, 0.2 µM of probe (FAM), 1x internal control primer/probe mix (VIC), 1x 

SensiFAST No-ROX Probe Mix and PCR grade water. 

 

Detection of naturally occurring netB positive Clostridium perfringens isolates in fecal samples 

Validation study was conducted to evaluate the efficacy of this assay under field condition. Fecal samples were 

collected from two independent layer farms with a closed house system. A total of 50 g fecal composite was randomly 

collected from 3 collection points (front, middle and back) of the house. In this validation trial, a total of nine fecal 

composites were evaluated. Each of the fecal composite was homogenized using a disposable spatula, and 20 g of the 

composite was subsequently transferred to a sterile stomacher bag. An 80 ml of sterile Phosphate Buffered Saline was 

added to the stomacher bag and mixed homogenously. The content of the bag was left to stand for 10 minutes to allow 

sedimentation of debris particles. A 180 μL of the supernatant was added into a sterile microcentrifuge tube containing 

300 µL of R1 (Arcis Biotechnology, UK). The stabilized extractants were delivered to a laboratory for qPCR analyses. Prior 

to qPCR process, an equal volume of R2 containing wash buffer was added to the fecal extract to remove nucleic acid 

chelation and enhance PCR reaction. QIAamp DNA Mini Kit was used subsequently for further purification and 

concentration of DNA according to the manufacturer’s protocol. Real-time PCR analysis was then carried out for the 

purified samples. 

 

RESULTS 

 

Detection of netB gene toxin from Clostridium perfringens field isolates 

Six Clostridium perfringens field isolates were cultured at 37oC in Thioglycollate Medium USP (Oxoid, UK) for 18 h. 

Subsequently, the cultures were plated on Perfringens OPSP Agar Base (Oxoid, UK) supplemented with Selective 

Supplements A and B (Oxoid, UK). The identity of all the field isolates was identified as C. perfringens through series of 

confirmatory tests. A conventional PCR amplification was subsequently deployed to screen for the presence of netB in 

C. perfringens. In this screening test, an expected netB amplicon size of 383 bp was observed for isolates S5.1 and M4.6 

(Figure 1). On the other hand, netB was not detected for isolates S5.2, S5.3, M4.1, M4.3, and no template control (NTC) in 

the PCR assay. Isolates S5.1 and M4.6 were subsequently cryopreserved for subsequent downstream qPCR development.  

 

Melt curve analysis 

The melting curve analysis resulted in a single peak with an average melting temperature (Tm) of 76.6 oC to 77.2 oC. 

As shown in Figure 2, melting temperature of isolate S5.1 and M4.6 were close to the synthetic netB fragment, 

demonstrating the specificity of the primer pairs.  No peaks were observed in the no template control (NTC). 

 

Limit of detection (netB positive Clostridium perfringens isolate) 

Limit of detection was determined as the lowest concentration of the isolate that can be detected using this assay. 

The range of detection spanned from 102 cfu/g to 106 cfu/g of netB positive Clostridium perfringens isolate. No 

significant difference was observed for the Cq value of the internal control for all the dilutions evaluated. As the assay was 

not able to detect fecal sample spiked at 101 cfu/g, the limit of detection of this assay was determined to be 102 cfu/g. 

 

Specificity test 

Specificity for netB real-time PCR assay was 100%. Expectedly, this assay was able to detect Clostridium 

perfringens isolate (S5.1) carrying netB with Cq value of 32.53. No cross reactivity was observed for other microorganisms 

tested, including netB negative C. perfringens ATCC 13124 strain in this test.  

 

Field validation 

Amongst the nine composites collected from different layer houses at two commercial farms (farm A and B), four of 

the samples were detected positive for netB gene (Table 3). An exogenous internal control was added into the reaction 

mixture to distinguish true target negatives from false negatives arising from potential PCR inhibition. As shown in Table 

3, the Cq (VIC) values of the internal control across six samples were within the expected range of 28 ± 3, signifying no 

PCR inhibition in the test run.  
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Figure 1 – Gel electrophoresis image of Clostridium perfringens isolates screening. 

 

 
 

Figure 2 – Melt curve analysis of netB amplicons from real-time PCR. 

 

 
Figure 3 – Standard curve generated from fecal samples spiked with different levels of netB positive Clostridium 

perfringens standards (●). Cq values of internal control (×) were plotted to check for level of inhibition. At each dilution, 

the Cq value was plotted against the logarithm of the concentration of amplicon (cfu/g). Cq values of the internal control 

were not statistically different between the different dilutions (p>0.05) using One-Way ANOVA. 
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Table 2 – Real-time PCR results on the specificity of the primer pair and probe on difference bacteria.  

Bacteria Strain Cq (FAM) 

Clostridium perfringens1 S5.1 32.53 

Clostridium perfringens ATCC® 13124 - 

Salmonella spp.2 Feed Isolate - 

Clostridium difficile ATCC® 9689 - 

Clostridium butyricum ATCC® 19398 - 

Campylobacter jejuni ATCC® 35918 - 

Lactobacillus fermentum ATCC® 23271 - 

Streptococcus suis ATCC® 99849 - 

Enterococcus faecalis NUS-EL 7/10 P4 - 

Escherichia coli ATCC® 25922 - 

Bacillus subtilis PB6 - 
1 Clostridium perfringens S5.1 was used as a positive control. 2 Salmonella spp. was isolated from feed sample and identified using Analytical 

Profile Index (API 20) E. 

 

Table 3 – Field validation results of fecal composite samples from Farm A. 

Sample Cq (FAM) Cq (VIC) 

House 1 - 26.68 

House 2 - 27.07 

House 3 - 27.16 

House 4 - 26.77 

House 5 35.96 26.79 

House 6 36.72 26.73 

Positive Control 32.93 26.65 

Negative Control - 27.17 

NTC - - 

 

Table 4 – Field validation results of fecal composite samples from Farm B. 

Sample Cq (FAM) Cq (VIC) 

House 1 40.23 28.39 

House 2 40.36 27.32 

House 3 - 28.01 

Positive Control 35.01 27.72 

Negative Control - 27.84 

NTC - - 

 
DISCUSSION 

 

Necrotic enteritis is an important disease in the poultry industry. It has been well documented that the key contributing 

virulence factor of NE is a pore forming heptameric NetB toxin (Keyburn et al., 2008). In this study, we initially obtained 

two netB-positive Clostridium perfringens field strains through conventional PCR screening. The discovery of the 

bacterium carrying netB gene forms the experimental basis to further develop a netB real-time PCR diagnostic assay. We 

first designed a qPCR primer pair targeting 105 bp of the netB nucleotide sequence. A BLAST alignment was performed 

against the publicly available netB gene reference to ensure the coverage of the sequence of primers is within the 

consensus sequence of the target gene. Our melt curve analysis (Figure 2) and specificity test (Table 2) demonstrated the 

high specificity of our primers and FAM-based probe.  

Preserving the integrity of DNA is critical for validation of different analyses, and this undertaking often requires 

different types of equipment for storage which may not be accessible in field (Groenenboom et al., 2019). To simplify the 

DNA extraction and storing process at a resource limited setting (e.g. farm), we coupled a simple 2-step DNA extraction 

process with our pre-established qPCR assay. This 2-step process incorporates two different reagents (R1 and R2) to 

(i). lyse bacterial cells, (ii) stabilize the genetic elements at field level, and (iii) enhance downstream PCR reaction through 

removal of inhibitors. With this rapid and convenient extraction method, we envision that any untrained farm personnel 

with limited resources will be able to collect, composite, and extract the DNA from fecal samples conveniently prior to 

sending the extracted sample to a scientific laboratory for real-time PCR analyses. 
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For actual on-field evaluation, a total of nine fecal composites were collected from two independent layer farms. We 

utilized the 2-step extraction method involving R1 at initial stage to lyse the bacteria cells and stabilize the released DNA. 

Following that, the R1-treated samples were delivered to the laboratory for actual qPCR analyses. Four of the fecal 

composites were detected positive for netB (Table 3 and 4). As shown, the Cq value of our internal control across all nine 

samples were within the recommended range, suggesting no PCR inhibition in our assay. Altogether, our result 

demonstrated that qPCR assay could be used as a rapid environmental surveillance tool to detect the presence of netB-

positive C. perfringens in fecal samples. Numerous studies have indicated that high load of C. perfringens carrying netB 

gene in poultry fecal is a strong indicator of NE occurrence in livestock (Chalmers et al., 2007; Mwangi et al., 2019; Thi et 

al., 2021). We propose that this real-time PCR assay can be deployed on field to evaluate pathogenicity potential of field 

isolates through detection of the virulence factor netB in C. perfringens. 

 

CONCLUSION  

 

The real-time PCR assay is a promising tool that can be deployed in the farm to detect presence of netB- positive 

Clostridium perfringens in chicken fecal samples. It can potentially be used as a routine surveillance system to diagnose 

the flocks’ health conveniently. Fundamentally, detection of netB-positive C. perfringens in fecal samples may suggest 

potential field circulation of the pathogens amongst the flocks. As the netB-targeted approach is highly selective against 

pathogenic C. perfringens, this non-invasive assay could provide an alternative sampling technique for monitoring of 

potential NE outbreak in the farm segment. 
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